Math Virtual Learning

Algebra IIB

Exponential Growth or Decay April 22, 2020

Algebra IIB
 Lesson: April 22, 2020

Objective/Learning Target: Students will solve real-world exponential growth or decay problems

Let's Get Started:

Compound Interest is a specific example of exponential GROWTH. Solve the following problem (review of April 20th lesson):

1. Sarah invested $\$ 2000$ in a mutual fund that earned 8% quarterly. How much money did she have after 5 years?

Half-life is a specific example of exponential DECAY. Solve the following problem (review of April 21st lesson):
2. Actinium- 226 has a half-life of 29 hours. If 100 mg of actinium-226 disintegrates over a period of 58 hours, how many mg of actinium- 226 will remain?

Answers to "Let's Get Started"

Problem 1:
$A=P\left(1+\frac{r}{n}\right)^{n \cdot t}$
$A=2000\left(1+\frac{.08}{4}\right)^{4 \cdot 5}$
$A=2971.89$

Sarah would have $\$ 2971.89$

Problem 2

$$
\begin{aligned}
& A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}} \\
& A=100\left(\frac{1}{2}\right)^{\frac{58}{29}}
\end{aligned}
$$

$$
A=25
$$

There would be 25 g of Actinium-226 remaining

General Formula for Growth and Decay

$A=A_{o}(r)^{t}$

A_{0} : the original amount of what is being measured
If $r>1$ is growth, If $0<r<1$ is decay
If r is expressed as a percent, turn it to a decimal. ADD to 1 for growth and SUBTRACT from 1 for decay
t is time in whatever units are given in the problem

Example 1: Growth

The population of a small town was 3600 in 2005 . The population increases by 4% annually. Approximately how many people lived in this this town in 2010?

Step 1: Define the variables:
 $\mathrm{A}_{0}=3600$
 $\mathrm{t}=5$ (2010-2005)
 $r=1+.04=1.04$
 Step 2: Fill in the Step 3: Simplify formula:
 $\mathrm{A}=\mathrm{A}_{0}(\mathrm{r})^{\mathrm{t}}$
 $A=4379.95$
 $A=3600(1.04)^{5}$
 The population is approximately 4380.

Example 2: Decay

Your car cost $\$ 42,500$ when you purchased it in 2015. The value of the car depreciates by 15% annually. How much is it worth in $2020 ?$

Step 1: Define the variables:
$\mathrm{A}_{0}=42500$
$\mathrm{R}=1-.15=0.85$
$\mathrm{t}=5$ (2020-2015)

Step 2: Fill in the
 Step 3: Simplify:

 formula:$\mathrm{A}=\mathrm{A}_{0}(\mathrm{r})^{\mathrm{t}}$
$A=\$ 18857.48$
$A=42500(0.85)^{5}$

Your Turn!

Example 1: You bought $\$ 2000$ worth of stock.
a. The value of the stocks decreases by 10% each year. What will the stock be worth in 10 years?
b. The value of the stock increases by 10% each year. What will the stock be worth in 10 years?
c. At 10%, will your stock lose or gain more?

Answer to Example 1:

Part A:
$\mathrm{A}_{0}=2000$
$\mathrm{t}=10$
$r=1-.1=0.9$

Part B:
$\mathrm{A}_{0}=2000$
$t=10$
$r=1+.1=1.1$
$\mathrm{A}=2000(1.1)^{10}$
$A=\$ 5187.48$

$\mathrm{A}=2000(0.9)^{10}$
$A=\$ 697.36$

Part C:
It grows more

Solving for Time

Because time is in the exponent, you need to turn the equation into a logarithm.
$A=A_{0}(r)^{t} \rightarrow \frac{A}{A_{0}}=r^{t} \rightarrow \ln \left(\frac{A}{A_{0}}\right)=\ln r^{t} \rightarrow \ln \left(\frac{A}{A_{0}}\right)=t \cdot \ln r$

$$
\rightarrow t=\frac{\ln \left(\frac{A}{A_{0}}\right)}{\ln (r)}
$$

Your Turn!

Example 2: A piece of land was purchased for $\$ 65,000$. The value of the land has slowly been decreasing by 1% annually. How long until it is only worth \$10,000?

Answer to Example 2:

Variables:
$\mathrm{A}_{0}=65000$
$A=10000$
$r=1-.01=0.99$

Formula:
$A=a_{0}(r)^{t}$
$10000=65000(0.99)^{t}$
$\ln (10000 / 65000)=t \cdot \ln (.99)$
$\mathrm{t}=\ln (10000 / 65000) / \ln (0.99)$
$\mathrm{t}=186.24$

Part C:

It will be worth \$10000 in about 186 years.

Independent Practice

Do the attached worksheet. The answers are on the next slide.

Exponential Growth and Decay Worksheet

Answers to Exponential Growth and Decay

